Neutrophil elastase cleavage of the gC1q domain impairs the EMILIN1-α4β1 integrin interaction, cell adhesion and anti-proliferative activity
نویسندگان
چکیده
The extracellular matrix glycoprotein EMILIN1 exerts a wide range of functions mainly associated with its gC1q domain. Besides providing functional significance for adhesion and migration, the direct interaction between α4β1 integrin and EMILIN1-gC1q regulates cell proliferation, transducing net anti-proliferative effects. We have previously demonstrated that EMILIN1 degradation by neutrophil elastase (NE) is a specific mechanism leading to the loss of functions disabling its regulatory properties. In this study we further analysed the proteolytic activity of NE, MMP-3, MMP-9, and MT1-MMP on EMILIN1 and found that MMP-3 and MT1-MMP partially cleaved EMILIN1 but without affecting the functional properties associated with the gC1q domain, whereas NE was able to fully impair the interaction of gC1q with the α4β1 integrin by cleaving this domain outside of the E933 integrin binding site. By a site direct mutagenesis approach we mapped the bond between S913 and R914 residues and selected the NE-resistant R914W mutant still able to interact with the α4β1 integrin after NE treatment. Functional studies showed that NE impaired the EMILIN1-α4β1 integrin interaction by cleaving the gC1q domain in a region crucial for its proper structural conformation, paving the way to better understand NE effects on EMILIN1-cell interaction in pathological context.
منابع مشابه
The extracellular matrix protein EMILIN1 silences the RAS-ERK pathway via α4β1 integrin and decreases tumor cell growth
The extracellular matrix plays a fundamental role in physiological and pathological proliferation. It exerts its function through a signal cascade starting from the integrins that take direct contact with matrix constituents most of which behave as pro-proliferative clues. On the contrary, EMILIN1, a glycoprotein interacting with the α4β1 integrin through its gC1q domain, plays a paradigmatic a...
متن کاملThe EMILIN/Multimerin Family
Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Multimerin1, and Multimerin2) constitute a four member family that in addition to the shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and assemble into high molecular weight multimers. They are...
متن کاملEMILIN1–α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation
EMILIN1 promotes α4β1 integrin-dependent cell adhesion and migration and reduces pro-transforming growth factor-β processing. A knockout mouse model was used to unravel EMILIN1 functions in skin where the protein was abundantly expressed in the dermal stroma and where EMILIN1-positive fibrils reached the basal keratinocyte layer. Loss of EMILIN1 caused dermal and epidermal hyperproliferation an...
متن کاملProteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment
Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functi...
متن کاملNeutrophil-dependent goblet cell degranulation: role of membrane-bound elastase and adhesion molecules.
We examined the effect of the neutrophil chemoattractants interleukin (IL)-8 and N-formyl-methionyl-leucyl-phenylalanine on goblet cell (GC) degranulation in guinea pigs. Chemoattractants caused time-dependent neutrophil recruitment and GC degranulation in vivo. NPC 15669 (an inhibitor of leukocyte infiltration) prevented both responses, implicating neutrophils. ICI 200,355 (an inhibitor of neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017